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Abstract. We study the problem of allocating indivisible goods among agents with addi-
tive valuations. When randomization is allowed, it is possible to achieve compelling notions 
of fairness such as envy-freeness, which states that no agent should prefer any other agent’s 
allocation to their own. When allocations must be deterministic, achieving exact fairness is 
impossible but approximate notions such as envy-freeness up to one good can be guaran-
teed. Our goal in this work is to achieve both simultaneously, by constructing a randomized 
allocation that is exactly fair ex ante (before the randomness is realized) and approximately 
fair ex post (after the randomness is realized). The key question we address is whether ex 
ante envy-freeness can be achieved in combination with ex post envy-freeness up to one 
good. We settle this positively by designing an efficient algorithm that achieves both prop-
erties simultaneously. The algorithm can be viewed as a desirable way to instantiate a lot-
tery for the probabilistic serial rule. If we additionally require economic efficiency, we 
obtain three impossibility results that show that ex post or ex ante Pareto optimality is 
impossible to achieve in conjunction with combinations of fairness properties. Hence, we 
slightly relax our ex post fairness guarantees and present a different algorithm that can be 
viewed as a fair way to instantiate a lottery for the maximum Nash welfare allocation rule.
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1. Introduction
Allocating resources in nonmonetary environments is 
commonplace in social institutions. Estates must be 
divided among beneficiaries, jointly held assets split 
between partners in a divorce, tasks assigned to em-
ployees, and educational resources distributed among 
public schools. Versions of this resource allocation 
problem—ranging from applied to theoretical models— 
have been studied in various research communities 
including mathematics, economics, operations research, 
and computer science (Brams and Taylor 1996, 
Matoušek et al. 2003, Moulin 2003, Brandt et al. 2016). 
A central concern in these settings is fairness: how can 
these decisions be made to not systematically disad-
vantage individuals or groups of people?

In this work, we consider a fundamental problem in 
fair resource allocation. A set of m indivisible goods 
are to be divided among a set of n agents who have 
different preferences over the goods. An agent’s pre-
ferences are expressed through a valuation function 

that assigns a value to every subset of the goods: We 
use the terms “value,” “valuation,” and “utility” inter-
changeably. We restrict ourselves to the case of additive 
valuation functions, in which each agent has a value for 
each good and their value for a subset is simply the sum 
of their values for the goods in the subset. Additive valua-
tions ignore complementary and substitutive effects that 
may occur in practice, but they are an appealing tradeoff 
between simplicity and expressiveness. For instance, the 
adjusted winner procedure (Brams and Taylor 1996) that 
is commonly used in dispute resolution assumes additive 
valuations, as does the popular fair division website 
Spliddit (http://spliddit.org).

A particularly appealing notion of fairness is envy- 
freeness (EF) (Gamow and Stern 1958, Foley 1967), 
which requires that no agent values the resources allo-
cated to another agent more than the resources allo-
cated to herself. When allocations are deterministic, it 
is not always possible to achieve envy-freeness; imag-
ine two agents liking a single good, which must be 

1 

OPERATIONS RESEARCH 
Articles in Advance, pp. 1–15 

ISSN 0030-364X (print), ISSN 1526-5463 (online) https://pubsonline.informs.org/journal/opre 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
3.

27
.9

.2
49

] 
on

 0
7 

M
ay

 2
02

3,
 a

t 0
7:

33
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

mailto:haziz@cse.unsw.edu.au
https://orcid.org/0000-0001-9757-4956
mailto:freemanr@darden.virginia.edu
https://orcid.org/0000-0003-4744-9449
mailto:nisarg@cs.toronto.edu
mailto:rvaish@iitd.ac.in
https://orcid.org/0000-0002-4417-3718
http://spliddit.org


given to one of them, leaving the other envious. The 
fundamental unfairness present in deterministic allo-
cations motivates the use of randomized mechanisms 
instead. Indeed, many mechanisms used in practice 
exploit lotteries to, for example, determine a priority 
ordering over the agents. With the power of randomi-
zation, it is easy to achieve ex ante EF: if a single agent 
is chosen uniformly at random and then allocated all 
the goods, no agent envies any other in expectation. 
However, this allocation induces a large amount of 
envy ex post, because one agent receives everything 
and all others receive nothing.

Although we cannot eliminate ex post envy, a sig-
nificant body of work has focused on defining and 
achieving approximate fairness for deterministic allo-
cations (Bouveret et al. 2016). One compelling notion is 
EF up to one good (EF1) (Lipton et al. 2004, Budish 2011), 
which requires that the envy of any agent toward an-
other agent can be eliminated by the removal of at most 
one good from the envied agent’s allocation. A deter-
ministic EF1 allocation can always be achieved. For 
instance, it is known that the round-robin method— 
where the agents choose goods one at a time in a 
repeating fixed order—is guaranteed to output an EF1 
allocation. Agents who come later in the ordering may 
envy those who come early but only up to a single 
good. One might hope that if the order of the agents 
was chosen randomly among the n! possible orderings 
then ex ante EF could additionally be achieved, but this 
is not the case (see additional discussion in Section 3). 
Other methods of achieving deterministic EF1 alloca-
tion are known (Lipton et al. 2004, Barman et al. 2018, 
Caragiannis et al. 2019, Brustle et al. 2020) but do not 
naturally lend themselves to exploiting randomization.

This motivates a natural question. Can we retain EF 
up to one good as an ex post guarantee, and simultaneously 
obtain (exact) EF ex ante? In other words, can we always 
randomize over EF1 allocations such that the resulting 
randomized allocation is EF? We show that the answer 
to this natural and elegant question is yes. More generally, 
we study various combinations of ex ante and ex post 
fairness and efficiency guarantees and identify combina-
tions that can (and cannot) be achieved simultaneously. 
The efficiency concepts that we examine are all based on 
the Pareto optimality (PO) principle: We want to identify 
allocations such that there does not exist another alloca-
tion that all agents weakly prefer and at least some agent 
strictly prefers. Our constructive results yield efficient 
algorithms; these improve on prior algorithms that pro-
vide either only ex ante or only ex post guarantees, thus 
paving the way for fairer resource allocation in practice.

1.1. Our Results
Our first technical result is an algorithm called the Proba-
bilistic Serial-lottery (PS-lottery) algorithm (Algorithm 1) 
that simultaneously achieves ex ante EF and ex post EF1 

(Theorem 2). The algorithm takes only the agents’ ordinal 
preferences over goods as input and achieves the two 
guarantees simultaneously with respect to all additive 
utilities consistent with these ordinal preferences. Fol-
lowing the fair division literature, these stronger guaran-
tees can be phrased as ex ante SD-EF and ex post 
SD-EF1, where SD stands for (first-order) stochastic dom-
inance. The algorithm is presented in Section 3. It calls 
the probabilistic serial algorithm (Bogomolnaia and Mou-
lin 2001) and Birkhoff’s decomposition algorithm as 
subroutines. The algorithm’s outcome is ex ante equiva-
lent to the outcome of the probabilistic serial rule. In 
particular, it can be viewed as a desirable way to instan-
tiate a lottery for the ex ante outcome of the probabilis-
tic serial rule. We show how the algorithm can be 
further modified using parametric network flows to 
additionally achieve both ex ante and ex post versions of 
SD-Efficiency (Theorem 3). SD-Efficiency can be viewed 
as an ordinal and very weak version of PO (with respect 
to additive valuations). If an allocation is not SD efficient, 
then there exists another allocation that gives each agent 
weakly more, and at least one agent strictly more, 
utility for all utility functions consistent with the 
ordinal preferences.

If we additionally want to achieve PO, which states 
that it should be impossible to find an allocation that 
improves some agent’s utility without reducing any 
other agent’s, then the PS-lottery algorithm can be 
viewed as being maximal in the sense of the follow-
ing impossibility results that we prove in Section 4
(see Figure 1 for a visual illustration). First, it is im-
possible to achieve ex ante SD-EF, ex post EF1, and ex 
post PO (Theorem 4). Second, achieving ex ante EF 
and ex post EF1 along with ex post fractional PO (a 
stronger notion of efficiency than ex post PO) is also 
impossible (Theorem 5). Third, ex ante fractional PO 
(i.e., with respect to the randomized allocation) and ex 
ante SD-EF are incompatible (Theorem 6).

In Section 5, we show that strong ex ante guarantees— 
in terms of both fairness and economic efficiency—can 
be achieved if we are willing to compromise on the ex 
post guarantee. In particular, we are able to achieve ex 
ante group fairness (GF) (Conitzer et al. 2019), which gen-
eralizes both EF (this is weaker than the SD-EF from The-
orem 6) and fractional PO, in conjunction with two ex 
post fairness properties that are incomparable but are 
both implied by EF1: proportionality up to one good (Prop1) 
(Conitzer et al. 2017) and EF up to one good more-and-less 
(EF1

1) (Barman and Krishnamurthy 2019); see Theorem 8
for a formal statement. Our algorithm applies the round-
ing technique of Budish et al. (2013) to the well-known 
maximum Nash welfare (MNW) allocation; in particular, 
it coincides with the ex ante MNW outcome. The main 
technical contribution in this section is to tighten the 
analysis of Budish et al. (2013) in a way that implies the 
axiomatic properties that we desire.
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Our results indicate that understanding the compati-
bility of fairness and efficiency from a combined ex 
ante and ex post perspective provides interesting chal-
lenges that can also be explored in other allocation and 
collective-decision problems.

1.2. Related Work
A large body of work in computer science and econom-
ics has focused on finding exactly ex ante fair random-
ized allocations and approximately fair deterministic 
allocations, and we cite those works as appropriate 
throughout the paper. Combining the two approaches 
was recently listed as an “interesting challenge” by 
Aziz (2019); however, little work has focused on this 
problem. Two exceptions are Aleksandrov et al. (2015) 
and Budish et al. (2013). Aleksandrov et al. (2015) con-
sider randomized allocation mechanisms for an online 
fair division problem and analyze their ex ante and ex 
post fairness guarantees. The style of their results is 
very similar to ours; however, they restrict attention to 
binary utilities, which simplifies the problem significantly. 

Budish et al. (2013) study the problem of implementing 
a general class of random allocation mechanisms sub-
ject to ex post constraints, and we build on this work in 
Section 5. The ex post constraints that Budish et al. 
(2013) establish are not the same as ours; in particular, 
they do not consider ex post axiomatic guarantees from 
the fair division literature as we do.

In the random assignment literature in economics, 
the idea of constructing a fractional assignment and 
implementing it as a lottery over pure assignments 
was introduced by Hylland and Zeckhauser (1979). 
Later work has studied both ex ante and ex post fair-
ness and efficiency guarantees provided by mechan-
isms in this setting (Abdulkadiroğlu and Sönmez 1998, 
Bogomolnaia and Moulin 2001, Chen and Sönmez 
2002, Nesterov 2017), but most of this work studies 
ordinal utilities and does not consider approximate 
notions of ex post fairness. (The standard random 
assignment setting has n agents, n goods, and requires 
that each agent receive exactly one good. The notions 
of ex post fairness that we use in this work are vacuous 

Figure 1. Logical Relations Between Fairness and Efficiency Concepts 

Notes. An arrow from (a) to (b) denotes that (a) implies (b). The properties in green and lime are simultaneously satisfied by algorithms. The 
combined properties in the pink or red shapes are impossible to simultaneously satisfy.

Aziz et al.: Best of Both Worlds 
Operations Research, Articles in Advance, pp. 1–15, © 2023 INFORMS 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
3.

27
.9

.2
49

] 
on

 0
7 

M
ay

 2
02

3,
 a

t 0
7:

33
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



in this restricted setting.) Gajdos and Tallon (2002) 
study the relationship between ex ante and ex post 
fairness but in their model the randomness comes 
from nature, not the allocation rule. Other works con-
sider the problem of implementing a fractional out-
come over deterministic outcomes subject to (possibly 
soft) constraints (Budish et al. 2013, Akbarpour and 
Nikzad 2020), but the constraints allowed by these 
papers do not fully capture our ex post fairness notions.

Although we focus on ex ante EF and ex post EF1 
(and relaxations of these properties), many other defi-
nitions of fairness have been studied in the literature on 
resource allocation. For example, equitability requires that 
all agents receive the same utility (Dubins and Spanier 
1961, Alon 1987, Cechlárová et al. 2013) and permits 
additive “up to one good” relaxations (Gourvès et al. 
2014, Freeman et al. 2019). Although envy-freeness is 
often achieved by maximizing the product of utilities 
(see Section 5), equitability is achieved by maximizing a 
different common welfare function: the minimum util-
ity. Other fairness notions have been considered in 
follow-up work to this paper. Halpern et al. (2020) 
study ex ante and ex post fairness in the context of 
binary valuations and show that the fractional MNW 
rule can be implemented as a distribution over deter-
ministic MNW allocations. In a similar vein, Babaioff 
et al. (2021) pursue our “best of both worlds” approach 
but consider alternative fairness concepts related to 
maximin fair share (Budish 2011). In another recent 
paper, Caragiannis et al. (2021) consider a notion called 
interim envy-freeness that is between the stringent notion 
of ex post EF and the weak notion of ex ante EF.

2. Preliminaries
For any positive integer r ∈ N, define [r] :� {1, : : : , r}. 
Let N � [n] denote a set of agents, and M denote a set 
of goods where m :� |M|.

2.0.1. Fractional and Randomized Allocations. A frac-
tional allocation of the goods in M to the agents in N is 
specified by a nonnegative n × m matrix A ∈ [0, 1]n×m 

such that for every good g ∈M, we have 
P

i∈NAi,g � 1; 
here, Ai,g denotes the fraction of good g assigned to 
agent i.

A fractional allocation A is integral if Ai,g ∈ {0, 1} for 
every i ∈N and g ∈M. For integral allocations, we will 
find it convenient to denote the binary vector Ai �

(Ai,g)g∈M as a set Ai :� {g ∈M : Ai,g � 1}. We will refer 
to Ai as the bundle of goods assigned to agent i and 
denote the allocation A as an ordered tuple of bundles 
A � (A1, : : : , An). When we simply say “an allocation,” 
it will mean a fractional allocation, unless otherwise 
clear from the context. For notational clarity, we use 
the letters X or Y for fractional allocations and write A 

or B for integral allocations. Let X be the set of all frac-
tional allocations.

A randomized allocation is a lottery over integral allo-
cations (we denote them by bold letters for clarity). 
Formally, a randomized allocation X is specified by 
a set of ℓ ∈ N ordered pairs {(pk ,Ak)}k∈[ℓ], where, for 
every k ∈ [ℓ], Ak is an integral allocation implemented 
with probability pk ∈ [0, 1], and 

P
k∈[ℓ]pk � 1. The sup-

port of X is the set of integral allocations {A1, : : : , Aℓ}.
A randomized allocation X :� {(pk , Ak)}k∈[ℓ] is naturally 

associated with the fractional allocation X :�
P

k∈[ℓ]pkAk, 
where Xi,g is the (marginal) probability of agent i receiv-
ing good g under X. In this case, we say that randomized 
allocation X implements fractional allocation X. There may 
be many randomized allocations implementing a given 
fractional allocation.

2.0.2. Preferences. Each agent i ∈N has an additive 
valuation function vi, where vi(g) ≥ 0 denotes the agent’s 
utility for fully receiving good g ∈M. Note that vi induces 
a weak order ≿i over goods where g≿i g′ if and only if 
vi(g) ≥ vi(g′), and g≻i g′ if and only if vi(g) > vi(g′). The 
utility of agent i under an allocation X ∈ X is given by, 
with slight abuse of notation, vi(Xi) �

P
g∈MXi,g · vi(g). 

We assume that for each good g ∈M, there exists at least 
one agent i ∈N with vi(g) > 0. This is without loss of gen-
erality as goods valued zero by everyone can be allocated 
arbitrarily.

2.0.3. Allocation Rule. A fair division instance I is 
defined by the triple (N, M, (vi)i∈N). We let I denote 
the set of all instances. An allocation rule f : I → 2X 

maps instances to (sets of) allocations.

Example 1. Consider an instance with two agents 1 
and 2 and four goods g1, g2, g3, g4. Then, the following 
is one possible fractional allocation:

X �
1=2 1=2 1=2 1=2
1=2 1=2 1=2 1=2

� �
:

The fractional allocation X can be achieved by the fol-
lowing randomized allocation (other choices are also 
possible) that is based on a probability distribution 
over two integral allocations:

X � 1
2 ·

1 1 1 1
0 0 0 0

� �

+
1
2 ·

0 0 0 0
1 1 1 1

� �

:

We now discuss a number of properties concerning 
fairness and efficiency of allocations and allocation 
rules.
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2.0.4. Ex Ante and Ex Post Properties. Central to this 
paper is the distinction between a property holding ex 
ante and ex post. For any property 〈P〉 defined for a 
fractional allocation, we say that a randomized alloca-
tion X satisfies 〈P〉 ex ante if the fractional allocation X 
it implements satisfies 〈P〉. Similarly, for any property 
〈Q〉 defined for an integral allocation, we say that a 
randomized allocation X satisfies 〈Q〉 ex post if every 
integral allocation in its support satisfies 〈Q〉.

2.1. Fairness Properties
Our central fairness concept is envy-freeness, which 
plays a fundamental role in the economic literature 
on fairness. Envy-freeness requires that an agent has 
weakly more value for their own bundle than any 
other agent’s bundle.

Definition 1 (Envy-freeness (EF); Gamow and Stern 
1958, Foley 1967). An allocation X is envy-free if for 
every pair of agents i, j ∈N, we have vi(Xi) ≥ vi(Xj).

One can also consider a more stringent notion of 
envy-freeness that requires that an agent has weakly 
more value for their own bundle than for any other 
agent’s bundle with respect to all additive valuation 
functions consistent with the agent’s ordinal prefer-
ences. The requirement can be captured via the first- 
order SD relation as follows. Given allocations X and 
Y, we say that agent i SD-prefers Xi to Yi, written 
Xi ≿

SD
i Yi, if for every good g ∈M, we have that 

P
g′∈M:g′≿i gXi,g′ ≥

P
g′∈M:g′≿i gYi,g′ . It is easy to check 

that Xi ≿
SD
i Yi is equivalent to v′i (Xi) ≥ v′i (Yi) under 

every additive valuation v′i consistent with the ordinal 
preference relation≿i. We write Xi ≻

SD
i Yi if Xi ≿

SD
i Yi 

holds but Yi ≿
SD
i Xi does not. Based on the SD prefer-

ence relation, we can define SD-EF as follows.

Definition 2 (SD-envy-freeness (SD-EF); Bogomol-
naia and Moulin 2001). An allocation X is SD-envy-free 
if for every pair of agents i, j ∈N, we have Xi ≿

SD
i Xj.

Both envy-freeness and SD-envy-freeness are concepts 
that apply to both fractional allocations and integral allo-
cations. Hence, each leads to an ex ante and an ex post 
version for randomized allocations: The former is satis-
fied if the induced fractional allocation is (SD-)envy-free, 
and the latter if each integral allocation in the support is 
(SD-)envy-free.

As we have already seen, an integral allocation satis-
fying envy-freeness is not guaranteed to exist. In view of 
this, a literature has developed that focuses on relaxa-
tions of envy-freeness, including the following property 
requiring that pairwise envy can be eliminated by 
removing a single good from the envied agent’s bundle.

Definition 3 (Envy-freeness up to One Good (EF1); 
Lipton et al. 2004, Budish 2011). An integral allocation 

A is envy-free up to one good if for every pair of agents 
i, j ∈N such that Aj ≠ ∅, we have vi(Ai) ≥ vi(Aj \ {g})
for some good g ∈ Aj.

Because EF1 is defined only for integral allocations, 
a randomized allocation can be ex post EF1 (if each 
integral allocation in its support satisfies EF1) but ex 
ante EF1 is not well defined. We also consider the fol-
lowing natural strengthening of EF1.

Definition 4 (SD-envy-freeness up to One Good (SD- 
EF1)). An integral allocation A is SD-envy-free up to 
one good if for every pair of agents i, j ∈N such that 
Aj ≠ ∅, we have Ai ≿

SD
i Aj \ {g} for some good g ∈ Aj.

Equivalently, an allocation is SD-EF1 if it is EF1 
under any additive valuation functions of the agents 
consistent with (≿ i )i∈N.

2.2. Efficiency
Next, we discuss economic efficiency of allocations.

Definition 5 (Fractional PO (fPO) and PO (PO)). An 
allocation X is fractionally Pareto optimal if there is no 
fractional allocation Y that Pareto-dominates it, that is, 
satisfies vi(Yi) ≥ vi(Xi) for all agents i ∈N and at least 
one inequality is strict. An integral allocation A is 
Pareto optimal if there is no integral allocation B that 
Pareto-dominates it.

Definition 5 defines one ex ante property (ex ante 
fPO) and two ex post properties (ex post fPO and ex 
post PO). For fractional allocations, fPO is tradition-
ally just referred to as PO, so we will slightly abuse 
terminology by using fPO and PO interchangeably to 
describe the ex ante property. However, for integral 
allocations, fPO is stronger than PO (Barman et al. 
2018) so it is important to distinguish between the two 
in the ex post sense.
Proposition 1. If a randomized allocation is ex ante frac-
tionally Pareto optimal, then it is also ex post fractionally 
Pareto optimal.

Proof. If a randomized allocation X :� {(pk, Ak)}k∈[ℓ]
implementing a fractional allocation X is not ex post fPO, 
then for some k ∈ [ℓ], the integral allocation Ak must be 
Pareto dominated by a fractional allocation, say Y. Then, 
the fractional allocation X′ :� pk ·Y+

P
r∈[ℓ]\{k}pr ·Ar 

Pareto-dominates X, which implies that X is not ex 
ante fPO. w

We can also consider a weak version of efficiency 
that is based on the SD relation. It requires that there 
should not exist an alternative allocation that is a 
Pareto improvement for all additive valuation func-
tions of the agents consistent with (≿i)i∈N.

Definition 6 (SD-Efficiency and Weak SD-Efficiency; 
Bogomolnaia and Moulin 2001). An allocation X is SD 
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efficient if there is no fractional allocation Y such that 
Yi ≿

SD
i Xi for all i ∈N and Yi ≻

SD
i Xi for some i ∈N. 

Additionally, we say that X is weakly SD efficient if there is 
no fractional allocation Y such that Yi ≻

SD
i Xi for all 

i ∈N.
SD-Efficiency is also referred to as ordinal efficiency in 

the literature. Figure 1 illustrates the relations between 
fairness and efficiency concepts.

3. PS-Lottery Algorithm
This section describes our main result that ex ante 
envy-freeness can be achieved in conjunction with ex 
post envy-freeness up to one good.

A natural approach toward this question is to start 
with the round-robin method. Under this method, we 
fix an agent ordering, and then agents take turns pick-
ing one good at a time in a cyclic fashion. At each step, 
an agent picks their most valuable good that is still 
available. It is well known that for any agent ordering, 
this method produces an integral allocation that is EF1 
(Caragiannis et al. 2019). Furthermore, it is easy to see 
that uniformly randomizing the agent ordering—the 
so-called randomized round-robin method—also achieves 
a relaxation of ex ante EF called ex ante proportionality.

Definition 7 (Proportionality (Prop); Steinhaus 1948). 
An allocation X is proportional if for every agent i ∈N, 
we have vi(Xi) ≥

1
n · vi(M).

However, it can be shown that the randomized 
round-robin method could fail to achieve ex ante EF; 
this follows from the observation of Bogomolnaia and 
Moulin (2001) that the random priority rule (which is 
randomized round-robin when the number of agents 
n is equal to the number of goods m) is not ex ante 
envy-free.

Instead of starting from a method that guarantees 
ex post EF1 and using it to achieve ex ante EF, let us 
do the opposite: Start from a fractional EF allocation 
and implement it using integral EF1 allocations. Proba-
bilistic serial is a well-studied algorithm that produces 
a fractional envy-free allocation (Bogomolnaia and 
Moulin 2001, Kojima 2009). The algorithm starts with 
all agents simultaneously eating one of their respec-
tive favorite goods at the same constant speed. (Ties 
between goods can be broken arbitrarily within the 
algorithm.) Once a good is completely consumed by a 
subset of agents, each of those agents proceeds to eat-
ing one of their favorite available goods at the same 
speed. The algorithm terminates when all goods have 
been eaten, and the fraction of each good consumed 
by an agent is allocated to her. A useful property of 
this algorithm is that it only uses the ordinal prefer-
ences of agents over goods, and computes an alloca-
tion that is ex ante envy-free for any additive utilities 

consistent with the ordinal preferences; thus, it is SD- 
envy-free. Although described as a continuous rule 
where agents eat infinitesimal amounts, the PS out-
come can be computed by a discrete algorithm in 
polynomial time O(nm) (Kojima 2009).

The challenge that we address here is to find an 
implementation of the probabilistic serial allocation 
that additionally satisfies ex post EF1. We do this 
using an algorithm that we refer to as the PS-lottery 
algorithm, which only uses the underlying ordinal 
preferences of the agents. We will make use of the fol-
lowing classical theorem (Birkhoff 1946, von Neumann 
1953, Johnson et al. 1960, Plummer and Lovász 1986). 
A square matrix is called bistochastic if its entries are 
nonnegative and each of its rows and columns sum 
to one; a bistochastic matrix is called a permutation 
matrix if its entries are in {0, 1}.

Theorem 1 (Birkhoff-von Neumann). Let X be a p × p bis-
tochastic matrix. There exists an algorithm that runs in O(p4:5)
time and computes a decomposition X �

Pq
k�1 λ

k ·Ak, where 
q ≤ p2� p+ 2; for each k ∈ [q], λk ∈ [0, 1] and Ak is a p × p 
permutation matrix; and 

Pq
k�1 λ

k � 1.

We are now in a position to present the PS-lottery 
algorithm (Algorithm 1). The high-level description of 
the algorithm is as follows. We first add some dummy 
goods (which every agent prefers less than any real 
good) to ensure that there are exactly nc goods. The 
expanded set of goods is called M′. Next, we simulate 
PS with this expanded set of goods M′. The algorithm 
runs for exactly c units of time because each agent eats 
exactly one unit of good per unit time. This produces a 
fractional allocation which is an n × (cn) matrix. To 
apply Theorem 1, we need to convert it into a square 
bistochastic matrix. For this, we track how much of 
each good each agent ate at each integral unit of time 
[t� 1, t], t ∈ [c], while running PS. While agents eat 
one unit of good for each unit of time, note that this 
unit may consist of smaller fractions of several differ-
ent goods. Then, we create a new set of agents N′ �
{i1, : : : , ic : i ∈N}, where agents i1, : : : , ic represent agent 
i. We allocate the one unit of good eaten by agent i 
during time step [t� 1, t], t ∈ [c], to the representative 
agent it. This produces a fractional allocation Y given 
by an (nc) × (nc) bistochastic matrix. We invoke Theo-
rem 1 to decompose it into a convex combination of 
permutation matrices (in which each representative 
agent receives a single good). The permutation matri-
ces are then modified by removing the dummy goods 
and combining the allocations to all representative 
agents {i1, : : : , ic} back into an allocation to the agent i 
that they represent, for each i ∈N. The convex combi-
nation over the modified permutation matrices gives 
us the desired solution, which is both ex ante EF and 
ex post EF1.

Aziz et al.: Best of Both Worlds 
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Algorithm 1 (PS-Lottery Algorithm)
Input: I � (N, M, ≿) where |N| � n, |M| �m.
Output: EF fractional allocation X �

PK
k�1 λ

kAk where 
each Ak represents a deterministic EF1 allocation and 
K ≤ (m+ n)2� 2(m+ n) + 2. 
1: c← ⌈m=n⌉.
2: If m is a multiple of n, D � ∅. Else, D � {d1, : : : , dnc�m}.
3: M′ ←M ∪D so that |M′| � cn.
4: Set the preference profile ≿′ of agents in N over 
goods in M′ as follows: for all o, o′ ∈M and for all i ∈
N, o≿

′
i o′ if o≿i o′. For all o ∈M and d ∈D, o ≻′i d. 

The preferences between pairs of dummy goods can 
be arbitrary. {//see the forthcoming paragraph 
on“Additionally Achieving Efficiency” for 
how tie-breaking can impact efficiency}

5: Run PS on the instance (N, M′, ≿′) to get a frac-
tional allocation X′.
6: N′ ← {i1, : : : , ic : i ∈N}. Agents i1, : : : , ic are termed 
representatives of agent i.
7: Construct a fractional allocation Y of goods in M′
to agents in N′, where, for each i ∈N and t ∈ [c], the 
goods eaten by agent i during time interval [t� 1, t]
are allocated to its representative agent it. Note that 
Y is a (cn) × (cn) bistochastic matrix.
8: Invoke Theorem 1 to compute a decomposition 
Y �

PK
k�1 λ

kBk where K ≤ (cn)2� 2cn+ 2.
9: Convert Y �

PK
k�1 λ

kBk into X �
PK

k�1 λ
kAk where 

all the dummy goods are ignored and each agent 
gets the allocation of its representatives.
10: return Allocation X for instance I and its decom-
position 

PK
k�1 λ

kAk.

Lemma 1. Fix an integral allocation Bk from Line 8 of 
Algorithm 1 and let t, t′ ∈ [c]. Let gt

i denote the good allo-
cated to representative agent it in Bk. Then agent i (weakly) 
prefers gt

i to gt′
i′ for any i′ ∈N and t′ > t (that is, agent i 

weakly prefers the good allocated to its representative for 
time t to the good allocated to any representative of any 
agent for any time later than t).
Proof. Suppose, for contradiction, that there exists an i′ ∈
N and t′ > t such that gt′

i′ ≻i gt
i . By Theorem 1, representa-

tive agent it must have eaten a nonzero share of good 
gt

i . That is, agent i must have eaten a nonzero share of 
good gt

i in time period [t� 1, t]. Similarly, representa-
tive agent i′t′ must have eaten a nonzero share of good 
gt′

i′ (in particular, agent i′ eats a nonzero share of good 
gt′

i′ in time period [t′� 1, t′]), and thus gt′
i′ was not fully 

consumed at time t. However, because gt′
i′ ≻i gt

i , agent i 
should have fully consumed gt′

i′ before consuming gt
i , a 

contradiction. w

Lemma 2. Every integral allocation returned by Algo-
rithm 1 is envy-free up to one good.

Proof. Fix an integral allocation Ak from the output of 
Algorithm 1. For any i ∈ [n] and t ∈ [c], let gt

i denote 
the good received by representative agent it in Bk (if 

such a good exists). Fix a pair of agents i, j ∈N. By 
Lemma 1, for every t ∈ [c], we have vi(gt

i) ≥ vi(gt+1
j ). Hence,

vi(Ai) ≥
Xc�1

t�1
vi(gt

i) ≥
Xc

t�2
vi(gt

j) � vi(Aj \ {g1
j }), 

which establishes EF1. w

Theorem 2. The randomized allocation implemented by 
Algorithm 1 is ex ante envy-free and ex post envy-free up 
to one good.

Proof. The ex post EF1 guarantee follows readily from 
Lemma 2. Ex ante EF follows from the fact that the 
fractional allocation X returned by the algorithm is 
equivalent to the fractional allocation returned by PS, 
thus inheriting its ex ante properties, including envy- 
freeness. The equivalence can be seen by noting that X 
is computed by taking the PS allocation X′ (that 
includes dummy goods), distributing the goods allo-
cated to agent i among its representative agents, and 
then recombining those goods back into a single bun-
dle Xi � X′i \D. w

Remark 1. The PS-lottery algorithm only uses the ordi-
nal information. Therefore, its envy-freeness guarantees 
imply the same properties for all cardinal utilities con-
sistent with the ordinal preferences. Hence, it returns an 
ex ante SD-envy-free and ex post SD-EF1 outcome.

Remark 2. The running time of Algorithm 1 is 
O((m+ n)4:5). The running time is dominated by the 
invocation of Theorem 1 on a p×p matrix, where 
p � cn ≤m+ n, which takes O(p4:5) �O((m+ n)4:5) time. 
The other operations such as computing an outcome of 
PS and transforming matrices take at most O(nm) time.

Remark 3. Algorithm 1 is a combinatorial algorithm 
that computes a lottery over at most (m+ n)2 determin-
istic allocations. By Carathéodory’s theorem, any n × m 
fractional allocation that is represented by a convex 
combination of some K deterministic allocations can be 
represented by a convex combination of at most nm + 1 
deterministic allocations among those K deterministic 
allocations. We can reduce the support of the lottery 
returned by Algorithm 1 to one involving at most nm + 1 
deterministic SD-EF1 and SD-efficient allocations as fol-
lows. By using Gaussian elimination, we compute the 
subset of the set of matrices {A1, : : : , AK} that forms the 
basis of A1, : : : , AK. We can then compute a convex com-
bination of the matrices in the basis to achieve the same 
fractional allocation X.

We note that, whereas the PS-Lottery algorithm pro-
vides a way to implement PS by EF1 allocations, not 
every implementation of the PS outcome may satisfy ex 
post EF1. For example, consider the case of two agents 
with identical preferences over two goods. In that case, 
tossing a coin and then giving both goods to one agent 
is ex ante equivalent to the PS outcome. However, it is 
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not EF1 if agents have strictly positive utilities for both 
goods.

Next, we present a simple example showing how 
our algorithm works.

Example 2. Consider the instance in Example 1 in which 
N � {1, 2}, M � {g1, g2, g3, g4}. Suppose the valuations are 
as in Table 1.

The ordinal preferences of the agents over the 
goods are as follows: v1(g1) > v1(g2) > v1(g3) > v1(g4)

and v2(g1) > v2(g3) > v2(g2) > v2(g4).
If we run the PS algorithm, we get the following 

outcome:

X′ �
1=2 1 0 1=2
1=2 0 1 1=2

� �

:

It can be checked that X′ is SD-envy-free. Because m is a 
multiple of n, D � ∅ and hence M′ �M ∪D �M. We 
now show how to achieve our desired lottery to achieve 
the PS outcome. We run the PS rule on (N, M′, ≿′) to 
get allocation X. Then, for each agent’s bundle, we let 
successive representative agents eat exactly one unit of 
goods one by one to get the following allocation, where ij 
denotes the jth representative agent of i:

Y �

11

21

12

22

1=2 1=2 0 0
1=2 0 1=2 0

0 1=2 0 1=2
0 0 1=2 1=2

2

6
6
6
4

3

7
7
7
5

�
BvN 1

2 ·
11

21

12

22

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2

6
6
6
4

3

7
7
7
5

+
1
2 ·

11

21

12

22

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

2

6
6
6
4

3

7
7
7
5

:

Translating these for our original instance, we get the 
following decomposition over EF1 allocations:

X � 1
2 ·

1 1 0 1
1 0 1 1

� �

+
1
2 ·

0 1 0 1
1 0 1 0

� �

:

3.1. Additionally Achieving Efficiency
Because the outcome returned by Algorithm 1 is a lot-
tery implementation of the PS rule, our algorithm 
inherits all the ex ante properties that the PS rule satis-
fies. When there are ties in the agents’ preferences, it is 

known that PS may fail to satisfy ex ante SD-Efficiency 
unless the ties are handled carefully. If we care about 
ex ante SD-Efficiency, then we do not artificially break 
any ties and can run the extended probabilistic serial 
(EPS) algorithm (Katta and Sethuraman 2006). The 
EPS algorithm uses the same continuous eating pro-
cess as PS but, rather than breaking ties arbitrarily, 
makes coordinated choices for agents to eat one of 
their most preferred goods, using parametric network 
flows to compute the outcome. By doing so, it guaran-
tees an outcome that is ex ante SD efficient and ex ante 
envy-free, even in the presence of ties. For m ≥ n goods, 
the algorithm takes time O(m3 log m).

The formal specification of our EPS-Lottery algorithm is 
provided as Algorithm A.1 in Appendix A. It differs from 
Algorithm 1 only in Step 5, where it runs the EPS algo-
rithm rather than the PS algorithm. The returned frac-
tional allocation X is equivalent to the fractional allocation 
output by EPS and therefore inherits SD-Efficiency and 
envy-freeness. Additionally, the outcome can be imple-
mented by EF1 deterministic allocations in the same man-
ner as for the PS-lottery algorithm. To see this, the proof of 
Lemma 1 relies only on the fact that at every point in time, 
each agent eats (one of) their most preferred remaining 
goods. This property continues to hold when we use EPS 
as our base algorithm instead of PS. Finally, the running 
time is unchanged as well because the bottleneck step is to 
invoke Theorem 1, which takes time O((m+ n)4:5).

Theorem 3. There is an algorithm that runs in time 
O((m+ n)4:5) and computes a randomized allocation that is ex 
ante SD-envy-free, ex ante SD efficient, and ex post SD-EF1.

4. Impossibilities
In the previous section, we showed that ex ante (SD-) 
EF, ex post (SD-)EF1, and ex ante SD-Efficiency can be 
achieved simultaneously, thus providing a compel-
ling solution for achieving both ex ante and ex post 
fairness in resource allocation problems. However, 
the SD-Efficiency guarantee is rather weak for settings 
where cardinal valuation functions are available. The 
obvious question then is whether we can achieve 
stronger efficiency guarantees along with ex ante and 
ex post fairness. Let us now consider the three cardi-
nal efficiency notions from Section 2 that are related 
through the following logical implications: ex ante 
fPO⇒ex post fPO ⇒ ex post PO.

We first consider adding the weakest of them: ex 
post PO. Unfortunately, we were not able to settle 
whether ex ante EF (or even the weaker ex ante Prop) 
is compatible with ex post EF1 and ex post PO. This 
is the most compelling open question raised by our 
work, and we will return to it shortly. We can, how-
ever, show that strengthening ex ante EF to ex ante 
SD-EF immediately yields an incompatibility with ex 
post EF1 and ex post PO. Therefore, any algorithm 

Table 1. 

Goods

g1 g2 g3 g4

Agents 1: 60 25 10 5
2: 90 3 5 2

Aziz et al.: Best of Both Worlds 
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that is ex ante envy-free and based only on the ordinal 
preferences of the agents (such as those based on prob-
abilistic serial) will necessarily fail either ex post EF1 
or ex post PO.

Theorem 4. There exists an instance with two agents and 
additive valuations in which no randomized allocation is 
simultaneously ex ante SD-envy-free, ex post envy-free up 
to one good, and ex post Pareto optimal.

Proof. Consider the example in which N � {1, 2}, M �
{a, b1, b2, b3} and the agents have utilities as given in 
Table 2.

The three goods b1, b2, b3 are identical goods that we 
refer to as b goods. Ex ante SD-EF implies that each 
agent in expectation gets 1/2 of a and 1.5 units of type 
b goods. Our first claim is that in any lottery imple-
menting such an ex ante SD-EF allocation, there is at 
least one ex post allocation in which agent 2 must get 
good a. This follows from the fact that agent 2 gets 
1/2 of a in expectation.

Our second claim is that in any integral EF1 and PO 
allocation, agent 2 cannot get good a. Suppose for con-
tradiction that agent 2 gets a. Then, EF1 requires that 
agent 1 gets at least two goods of type b. However, 
then, agent 1 can exchange these two goods for a to 
obtain a Pareto improvement.

From the previous two claims, it follows that for this 
instance, there exists no lottery over integral EF1 and PO 
outcomes that implements the SD-EF random outcome. w

Let us move on and consider imposing a slightly 
stronger efficiency notion: ex post fPO. Integral EF1 +
fPO allocations are known to always exist (Barman 
et al. 2018). Hence, the question of whether we can ran-
domize over such allocations to achieve a desirable ex 
ante fairness guarantee is meaningful. However, in 
this case, we show that achieving ex ante EF is impos-
sible along with ex post EF1 and ex post fPO.

Theorem 5. There exists an instance with two agents and 
additive valuations in which no randomized allocation is 
simultaneously ex ante envy-free, ex post envy-free up to 
one good, and ex post fractionally Pareto optimal.

Proof. We present an instance in which the unique 
integral allocation satisfying EF1 + fPO violates EF. 
Specifically, consider an instance with two goods (g1, 
g2) and two agents (1, 2) whose additive valuations 
are given in Table 3.

This instance has exactly two integral EF1 allocations: 
A :� ({g1}, {g2}) and B :� ({g2}, {g1}). It is easy to check 
that B is not fPO because it is Pareto dominated by a frac-
tional allocation X that assigns g1 completely to agent 1 
and splits g2 equally between the two agents. Indeed, 
v1(X1) � v1(g1) + 0:5 · v1(g2) � 2 ≥ v1(B1) and v2(X2) �
0:5 · v2(g2) � 1:5 > v2(B2). To see why A is fPO, notice 
that it assigns each good to an agent that has the highest 
valuation for it. Therefore, A maximizes the utilitarian 
social welfare (i.e., sum of agents’ utilities), which implies 
that it is fPO. Therefore, any randomized allocation that 
is ex post EF1 + fPO must be supported entirely on the 
integral allocation A. However, A violates EF because 
v1(A1) � v1(g1) < v1(g2) � v1(A2). Therefore, the random-
ized allocation is not ex ante envy-free. w

In the proof of Theorem 5, not only does allocation A 
violate envy-freeness, but it also violates the weaker 
property of proportionality. Therefore, Theorem 5 con-
tinues to hold even when we replace ex ante EF by ex 
ante Prop.

We mentioned earlier that achieving ex ante EF 
along with ex post EF1 + PO is an open question. Two 
prominent methods for finding an integral EF1+PO 
allocation are the integral MNW rule (Caragiannis et al. 
2019), which maximizes the product of agents’ utilities, 
and the market-based rule of Barman et al. (2018). An 
interesting implication of Theorem 5 is that we cannot 
hope to achieve ex ante envy-freeness (or even ex ante 
proportionality) by randomizing over allocations re-
turned by either method. The latter method is guaran-
teed to return an integral EF1 + fPO allocation, so 
Theorem 5 directly applies. The MNW rule, although 
only guaranteed to return an integral EF1 + PO allo-
cation, uniquely returns allocation A in the example 
presented in the proof of Theorem 5, which violates 
proportionality (and therefore envy-freeness).

Finally, when we consider the strongest efficiency 
property of ex ante fPO, we find that it is incompatible 
with ex ante SD-EF even without imposing an ex post 
fairness guarantee. The theorem follows directly from 
theorem 5 of Aziz and Ye (2014), but we reprove it in 
our context for the sake of completeness.

Theorem 6. There exists an instance with two agents and 
additive valuations in which no randomized allocation is 
simultaneously ex ante SD-envy-free and ex ante fraction-
ally Pareto optimal.

Table 2. 

Goods

a b1 b2 b3

Agents 1: 7 1 1 1
2: 4 2 2 2

Table 3. 

Goods

g1 g2

Agents 1: 1 2
2: 1 3

Aziz et al.: Best of Both Worlds 
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Proof. Consider the same instance as in the proof of 
Theorem 5, with two goods (g1, g2) and two agents (1, 2) 
whose additive valuations are v1(g1) � 1, v1(g2) � 2 and 
v2(g1) � 1, v2(g2) � 3. Because both agents prefer g2 to g1, 
the only allocation X satisfying SD-EF is the one that allo-
cates each agent half of each good, with v1(X) � 1:5 and 
v2(X) � 2. However, this allocation is Pareto dominated 
by the allocation Y that allocates g1 and one third of 
g2 to agent 1 and allocates two thirds of g2 to agent 2, 
with v1(Y) � 5=3 > v1(X) and v2(Y) � 2 � v2(X). w

5. MNW-Lottery Algorithm
Given the impossibilities in the previous section, together 
with the difficulty of achieving ex ante EF and ex post 
EF1 + PO using known techniques, it is evident that achi-
eving any efficiency property stronger than SD-Efficiency 
requires relaxing at least one of the fairness guarantees. In 
this section, we focus on relaxing ex post EF1. There are 
two prominent relaxations that have been proposed in 
the literature—namely, Prop1 and EF1

1.
Proportionality up to one good requires that an 

agent be able to achieve their proportional share by 
adding a single good to their bundle.

Definition 8 (Proportionality up to One Good (Prop1); 
Conitzer et al. 2017). An integral allocation A is pro-
portional up to one good if for every agent i ∈N, either 
vi(Ai) ≥ vi(M)=n or there exists a good g ∉ Ai such that 
vi(Ai ∪ {g}) ≥ vi(M)=n.

The next property, called envy-freeness up to one 
good more-and-less (EF1

1) (Barman and Krishna-
murthy 2019), is a relaxation of EF1 and enjoys strong 
algorithmic support in conjunction with PO (Barman 
and Krishnamurthy 2019). It allows a good to be 
removed from the envied agent’s bundle, and a (pos-
sibly different) good to be added to the envying 
agent’s.

Definition 9 (Envy-Freeness up to One Good More-and- 
Less (EF1

1). An integral allocation A is envy-free up to one 
good more-and-less if for every pair of agents i, j ∈N such 
that Aj ≠ ∅, we have vi(Ai ∪ {gi}) ≥ vi(Aj \ {gj}) for 
some goods gi ∉ Ai and gj ∈ Aj.

Prop1 and EF1
1 are incomparable in general, in the 

sense that allocations satisfying one property may not 
satisfy the other.

We show that both can be achieved simultaneously, 
and in fact, this can be done while also achieving one of 
the strongest ex ante properties called ex ante group 
fairness. Group fairness simultaneously strengthens 
various properties including envy-freeness and PO by 
offering fairness guarantees to groups of arbitrary size 
and composition. Given any set S ⊆N of agents, we 
write ∪i∈SXi to denote the union of the fractional allo-
cations to agents in S, that is, ∪i∈SXi :� (

P
i∈SXi,g)g∈M.

Definition 10 (Group Fairness (GF); Conitzer et al. 
2019). An allocation X is group fair if for all nonempty 
subsets of agents S, T ⊆N, there is no fractional allocation 
Y of ∪i∈TXi to the agents in S such that |S|

|T| · vi(Yi) ≥ vi(Xi)

for all agents i ∈ S and at least one inequality is strict.
Imposing the previous constraint over restricted 

(S, T) pairs can recover properties such as proportion-
ality (|S| � 1, T �N), envy-freeness (|S| � |T| � 1), and 
fractional PO (S�T�N). Because group fairness implies 
envy-freeness, it is clear that it may not be possible to 
achieve ex post group fairness, so we will only focus on 
ex ante group fairness. Ex ante GF not only implies ex 
ante envy-freeness, but also ex ante fPO, which, by Propo-
sition 1, implies ex post fPO for any implementation of it. 
In other words, our goal is to implement a fractional GF 
allocation using integral Prop1 + EF1

1 allocations.
Before we explain how we achieve the properties de-

fined previously, we define an important fractional alloca-
tion rule that will be central to the study in this section.

Definition 11 (Fractional MNW Rule). Given an instance 
I ∈ I , the fractional MNW rule returns all fractional 
allocations that maximize the product of agents’ util-
ities, that is, MNW(I) :� arg maxX∈XΠi∈N vi(Xi). We 
refer to an allocation A ∈MNW(I) as a fractional MNW 
allocation.

It is known that any fractional MNW allocation 
satisfies group fairness (Conitzer et al. 2019). Further-
more, we know that a fractional MNW allocation can 
be computed in strongly polynomial time (Orlin 2010, 
Végh 2016). Hence, we ask whether a fractional MNW 
allocation can be implemented using integral Prop1 +
EF1

1 allocations. Our starting point is a result by Bud-
ish et al. (2013) that allows implementing any frac-
tional allocation using integral allocations that are 
very “close” to it in agent utilities. Specifically, they 
prove the next result deriving and using an extension 
of the Birkhoff-von Neumann theorem (Theorem 1).

Proposition 2 (Utility Guarantee; Theorem 9 of Budish 
et al. 2013). Given any fractional allocation X, one can 
compute, in strongly polynomial time, a randomized alloca-
tion implementing X whose support consists of integral 
allocations A1, : : : , AK such that for every k ∈ [K] and every 
agent i ∈N,

|vi(Xi)� vi(Ak
i )| ≤max{vi(g)� vi(g′) : 0 < Xi,g, Xi,g′ < 1}:

The upper bound established in Proposition 2 on how 
much agent i’s utility under an integral allocation Ak in 
the support can differ from their utility under the frac-
tional allocation X depends only on their own fractional 
allocation Xi. In contrast, the fairness guarantees we 
want to establish for the integral allocations in the 
support—Prop1 and EF1

1—consider what happens when 
we add a good to the bundle of agent i that agent i is 
not already allocated in the integral allocation Ak

i ; in other 
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words, we need a stronger guarantee for integral allo-
cations in the support that depends on which goods 
the agent is (or is not) allocated ex post.

It turns out that the method proposed by Budish 
et al. (2013) already provides such a guarantee, and 
their proof can be adapted to establish a more nuanced 
bound. Specifically, we show that if the agent’s ex ante 
utility vi(Xi) exceeds their ex post utility vi(Ak

i ), then the 
gap is at most the maximum value the agent has for 
any good that they lost in the integral allocation (i.e., 
any good g such that 0 < Xi,g < 1 and Ak

i,g � 0). Simi-
larly, if the ex post utility exceeds the ex ante utility, 
then the gap is at most the maximum value the agent 
has for any good that they gained in the integral alloca-
tion (i.e., any good g such that 0 < Xi,g < 1 and Ak

i,g � 1). 
We later show that this subtle improvement helps us 
establish the desired ex post fairness guarantees.

Lemma 3 (Utility Guarantee++). Given a fractional allo-
cation X, one can compute, in strongly polynomial time, a 
randomized allocation implementing X whose support con-
sists of integral allocations A1, : : : , AK such that for every 
k ∈ [K] and every agent i ∈N, the following hold: 

1. If vi(Ak
i ) < vi(Xi), then ∃g�i ∉ Ak

i with Xi,g�i > 0 such 
that vi(Ak

i ) + vi(g�i ) > vi(Xi).
2. If vi(Ak

i ) > vi(Xi), then ∃g+i ∈ Ak
i with Xi,g+i < 1 such 

that vi(Ak
i )� vi(g+i ) < vi(Xi).

The proof of Lemma 3 is presented in Section B.2 of 
Appendix B.

We now show how Lemma 3 can be used to achieve 
our desired ex post fairness guarantees of Prop1 and EF1

1. 
Our overall approach is summarized as Algorithm 2 and 
is referred to as the MNW-lottery algorithm.

Algorithm 2 (MNW-Lottery Algorithm)
Input: I � (N, M, v).
Output: Fractional allocation X �

PK
k�1 λ

kAk where 
each Ak represents an integral allocation. 
1: X← Fractional MNW allocation (using an algo-
rithm of Orlin (2010) or Végh (2016)).
2: For any i ∈N and any k ∈ [m], let Qi,k :�

Pk
t�1 Xi,gi,t 

be the total fractional amount of the k most preferred 
goods assigned to agent i under X.
3: Consider the following set of bihierarchical con-
straints on a generic fractional allocation Y:

H1 : ⌊Qi,k⌋ ≤
Xk

t�1
Yi,gi,t ≤ ⌈Qi,k⌉, ∀i ∈ N and ∀k ∈ [m],

H2 :
X

i∈N
Yi,g � 1, ∀g ∈M: (1) 

4: Use the Algorithm of Budish et al. (2013) (specified in 
their appendix B) to find the randomized allocation 
PK

k�1 λ
kAk implementing the fractional allocation X 

that satisfies the same constraints as (1).
5: return Allocation X for instance I and its decompo-
sition 

PK
k�1 λ

kAk.

Theorem 7. There is a strongly polynomial-time algorithm 
that, given any fractional proportional allocation as input, 
computes an implementation of it using integral allocations 
that are proportional up to one good. If, in addition, the 
input is a fractional MNW allocation, then the integral 
allocations in the support also satisfy envy-freeness up to 
one good more-and-less.

Proof. Let X be a fractional allocation and let A1, : : : , AK 

be integral allocations in the support of an implementa-
tion of X produced by Lemma 3.

Suppose X satisfies proportionality. We want to 
show that for each k ∈ [K], Ak is Prop1. Because X 
is proportional, for every i ∈N, vi(Xi) ≥ vi(M)=n. Fix 
k ∈ [K]. By Lemma 3, we have that for every agent 
i ∈N, either vi(Ak

i ) ≥ vi(Xi) ≥ vi(M)=n, or there exists a 
good g ∉ Ak

i such that vi(Ak
i ) + vi(g) > vi(Xi) ≥ vi(M)=n. 

Therefore, Ak is Prop1.
Next, suppose that X maximizes the Nash social wel-

fare among all fractional allocations. Because a frac-
tional MNW allocation is certainly proportional (Varian 
1974), the aforementioned argument still applies for ex 
post Prop1. We show that in this case, Ak is also EF1

1 
for each k ∈ [K]. Because X is a fractional MNW alloca-
tion, the following condition is satisfied for any pair of 
agents i, j ∈N and any good g ∈M (the condition that 
transferring an arbitrarily small fraction of good g 
from agent i to agent j does not increase Nash welfare 
reduces to this condition):

Xi,g > 0⇒ vi(g)
vi(Xi)

≥
vj(g)
vj(Xj)

: (2) 

Fix a pair of distinct agents i, j ∈N. By Lemma 3, either 
vi(Ak

i ) ≤ vi(Xi), or there exists g+i ∈ Ak
i with Xi,g+i < 1 such 

that vi(Ak
i \ {g+i }) < vi(Xi). Similarly, either vj(Ak

j ) ≥

vj(Xj), or there exists g�j ∉ Ak
j with Xj,g�j > 0 such that 

vj(Ak
j ∪ {g�j }) > vj(Xj). To simplify the analysis, let us 

assume that the second condition holds in both cases. (If 
vi(Ak

i ) ≤ vi(Xi) (or vj(Ak
j ) ≥ vj(Xj)), we can treat g+i (or g�j ) 

as a dummy good with vi(g+i ) � 0 (or vj(g�j ) � 0).)
By summing the right-hand side inequality in Equa-

tion (2) over all g ∈ Ak
i \ {g+i }, we get

vj(Ak
i \ {g+i })

vj(Xj)
≤

vi(Ak
i \ {g+i })

vi(Xi)
< 1:

Thus, vj(Ak
i \ {g+i }) < vj(Xj) < vj(Ak

j ∪ {g�j }), implying 
that Ak satisfies EF1

1, as desired. w

Remark 4. The proof of Theorem 7 establishes a stron-
ger version of Prop1 wherein an agent not receiving 
their proportional share gets strictly more than their 
proportional share by receiving one additional good. 
Similarly, it also establishes a stronger version of EF1

1 
wherein an agent envying another agent would strictly 
prefer their own allocation over the other agent’s 
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allocation after adding one missing good to their bun-
dle and removing one good from the other agent’s 
bundle.

Barman and Krishnamurthy (2019) recently estab-
lished that integral Prop1 + EF1

1 + fPO allocations exist 
and can be computed in strongly polynomial time. 
They rely on special-purpose techniques for rounding 
a fractional MNW allocation. By constrast, Theorem 7
uses a standard technique to round a fractional MNW 
allocation, computes not just one integral Prop1+
EF1

1+ fPO allocation but rather an implementation of 
the fractional MNW allocation over such integral allo-
cations, and can be applied to any fractional Prop + PO 
allocation to implement it using integral Prop1+ fPO allo-
cations. Recall that because a fractional MNW allocation is 
Pareto optimal, any allocation in the support of an imple-
mentation of it must be fPO by Proposition 1.

In addition to guaranteeing EF1
1 integral allocations 

in Theorem 7, the fractional MNW allocation is known 
to be group fair. This observation, along with the fact 
that a fractional MNW allocation can be computed in 
strongly polynomial time (Orlin 2010, Végh 2016), and 
Theorem 7 immediately yield the main result of this 
section.

Theorem 8. There exists a randomized allocation that is ex 
ante group fair, ex post proportional up to one good, and ex 
post envy-free up to one good more-and-less. Furthermore, 
it can be computed in strongly polynomial time.

Example 3. Consider again the instance in Example 1
in which N � {1, 2}, M � {g1, g2, g3, g4}, and the valua-
tions of the agents for the goods are given in Table 4.

The unique fractional MNW allocation is

X �
1=6 1 1 1

5=6 0 0 0

" #

:

The unique randomized implementation of fractional 
allocation X (and, in particular, the randomized alloca-
tion output by the algorithm of Budish et al. (2013)) is

X � 1
6 ·

1 1 1 1
0 0 0 0

� �

+
5
6 ·

0 1 1 1
1 0 0 0

� �
:

Both integral allocations in the decomposition of X 
satisfy Prop1 and EF1

1.

6. Discussion
We consider the question of how well fairness and effi-
ciency can be satisfied from ex post and ex ante per-
spectives simultaneously. Although we focused on the 
case of allocating goods to agents, an interesting exten-
sion is the case where we instead have a set of nega-
tively valued bads to allocate (e.g., chores to family 
members or committee assignments to department fac-
ulty). With appropriately generalized definitions, all 
our results continue to hold for the bads setting.

Algorithms 1 and 2 output a distribution over inte-
gral allocations rather than simply producing a sam-
ple. Although a sample may be sufficient for making 
an allocation, it has a key limitation: it is impossible 
for a participant to audit the ex ante properties of the 
distribution. On the other hand, from a transparency 
perspective, publishing a distribution allows ex ante 
properties to be verified, as long as participants trust 
the mechanism by which a random sample is chosen.

Perhaps the most fascinating open question that 
stems from our work is whether ex ante envy-freeness 
(or even ex ante proportionality) is compatible with ex 
post EF1 and ex post PO.

Open Question: Does there always exist a randomized 
allocation that is ex ante EF, ex post EF1, and ex post 
PO? What about ex ante Prop, ex post EF1, and ex post 
PO?

The difficulty in approaching this question is that there 
are very few available methods of finding integral EF1 +
PO allocations (Barman et al. 2018, Caragiannis et al. 
2019), so finding many such allocations and randomizing 
over them is tricky. Also, unlike the set of integral EF1 
allocations, which we somewhat understand, not much is 
known about the set of integral EF1 + PO allocations 
other than the fact that it is always nonempty.

Various other open problems remain. For instance, 
other fairness concepts such as envy-freeness up to 
any good (EFX) (Caragiannis et al. 2019) or approxi-
mate maximin share fairness (MMS) (Budish 2011) can 
be considered. Future work can also consider the price 
of fairness: What fraction of the optimal social welfare 
must be sacrificed (in the worst case) to guarantee a 
fair allocation? Bertsimas et al. (2011) and Caragiannis 
et al. (2012) study the price of EF, whereas Bei et al. 
(2021) and Barman et al. (2020) study the price of EF1 
for indivisible goods. What is the price of achieving 
both ex ante EF and ex post EF1 together?

More broadly, the next step would be to achieve ex 
ante and ex post fairness guarantees simultaneously in 
a variety of other problems such as voting, matching, 
and public decision making.
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Table 4. 

Goods

g1 g2 g3 g4

Agents 1: 60 25 10 5
2: 90 3 5 2

Aziz et al.: Best of Both Worlds 
12 Operations Research, Articles in Advance, pp. 1–15, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
3.

27
.9

.2
49

] 
on

 0
7 

M
ay

 2
02

3,
 a

t 0
7:

33
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



This paper is an extended version that combines the main 
results of earlier work by Freeman et al. (2020) and Aziz 
(2020).

Appendix A. EPS-Lottery Algorithm
Algorithm A.1 (EPS-Lottery Algorithm)

Input: I � (N, M, ≿) where |N| � n, |M| �m.
Output: EF fractional allocation X �

PK
k�1 λ

kAk where 
each Ak represents a deterministic EF1 allocation and K ≤
(m+ n)2 � 2(m+ n) + 2. 
1: c←⌈m=n⌉.
2: If m is a multiple of n, D � ∅. Else, D � {d1, : : : , dnc�m}.
3: M′ ←M ∪D so that |M′| � cn.
4: Set the preference profile ≿′ of agents in N over goods 
in M′ as follows: for all o, o′ ∈M and for all i ∈N, o≿

′
i o′ if 

o≿i o′; for all o ∈M and d ∈D, o ≻′i d. The preferences 
between pairs of dummy goods can be arbitrary.
5: Run EPS on the instance (N, M′, ≿′) to get a fractional 
allocation X′.
6: N′ ← {i1, : : : , ic : i ∈N}. Agents i1, : : : ic are termed as 
representatives of agent i.
7: Construct a fractional allocation Y of goods in M′ to 
agents in N′, where, for each i ∈N and t ∈ [c], the goods 
eaten by agent i during time interval [t� 1, t] are allocated 
to its representative agent it. Note that Y is a (cn) × (cn) bis-
tochastic matrix.
8: Invoke Theorem 1 to compute a decomposition Y �
PK

k�1 λ
kBk, where K ≤ (cn)2 � 2cn+ 2.

9: Convert Y �
PK

k�1 λ
kBk into X �

PK
k�1 λ

kAk where all the 
dummy goods are ignored and each agent gets the alloca-
tion of its representatives.
10: return Allocation X for instance I and its decomposition 
PK

k�1 λ
kAk.

Appendix B. Omitted Material from Section 5

B.1. Decomposition Result of Budish et al. (2013)
Let X be a fractional allocation. Recall that X satisfies 
column-wise feasibility constraints, namely 0 ≤

P
i∈NXi,r ≤ 1 

for all r ∈M. More generally, we can impose capacity con-
straints of the form qS ≤

P
(i,r)∈SXi,r ≤ qS, where S is a con-

straint set comprising of a collection of agent-object pairs, 
and qS and qS are the lower and upper quotas for S, respec-
tively. The set of all capacity constraints imposed by a given 
problem is called the constraint structure H of the problem 
and is specified as a collection of all constraint sets and the cor-
responding quotas (qS, qS)S∈H. Given a constraint structure H, 
we say that the fractional allocation X admits a feasible imple-
mentation X :� {(pk, Ak)}k∈[ℓ] if every integral allocation in its 

support also satisfies the constraints in H. That is, for every 
k ∈ [ℓ], we have

qS ≤
X

(i, r)∈S
Ak

i,r ≤ qS for every S ∈H:

Definition B.1 (Hierarchy and Bihierarchy). A constraint 
structure H is said to be a hierarchy (or a laminar family) if 
for every S, S′ ∈H, we have that either S ⊂ S′, or S′ ⊂ S, or 
S ∩ S′ � ∅. We say that H is a bihierarchy if it can be parti-
tioned into two hierarchies, that is, if there exist hierarchies 
H1 and H2 such that H �H1 ∪H2 and H1 ∩H2 � ∅.

As an example, consider the fractional allocation X in Fig-
ure B.1. The row constraints (shown as red or blue solid rec-
tangles) and all singleton constraints of the form 0 ≤ Xi,r ≤ 1 
(not shown in the figure) together constitute a hierarchy, say 
H1, because for any pair of constraint sets, either they are 
disjoint or one is completely contained inside the other. Sim-
ilarly, the column constraints (shown as gray dotted rectan-
gles) form another hierarchy H2. Furthermore, H :�H1 ∪H2 
is a bihierarchy because any constraint set (rectangle or sin-
gleton) belongs to exactly one of H1 or H2.

Budish et al. (2013) showed that bihierarchy constraint 
structure is a sufficient condition for a fractional allocation 
to admit a feasible implementation. We recall this result in 
Proposition B.1.

Proposition B.1 (Budish et al. 2013). Given a fractional allo-
cation X satisfying a bihierarchy constraint structure H, one can 
compute, in strongly polynomial time, a set of coefficients 
p1, : : : , pℓ ∈ [0, 1] and integral allocations A1, : : : , Aℓ�such that 
(a) 

Pℓ
k�1 pk � 1, (b) each Ak satisfies the constraints in H, and 

(c) X �
Pℓ

k�1 pkAk.

Observe that the well-known Birkhoff-von Neumann the-
orem is a special case of Proposition B.1 when H1 consists 
of all singleton and row constraints, H2 consists of all col-
umn constraints. The lower and upper quotas for the single-
ton constraints are zero and one, respectively, whereas those 
for the row and column constraints are one and one. It is 
worth pointing out that, although Budish et al. (2013) only 
note a polynomial running time, it is easy to check that their 
(combinatorial) algorithm, in fact, runs in strongly polyno-
mial time.

Budish et al. (2013) use Proposition B.1 to establish the 
utility guarantee (Proposition 2).

B.2. Proof of Lemma 3
Recall the statement of Lemma 3.

Lemma 3 (Utility Guarantee++). Given a fractional allocation 
X, one can compute, in strongly polynomial time, a randomized 

Figure B.1. Decomposition of a Fractional Proportional Allocation X into Integral Prop1 Allocations A1, A2, and A3 

Note. The underlying fair division instance comprises four goods and two agents with valuations v1(1) � 10, v1(2) � 6, v1(3) � 4, v1(4) � 2 and 
v2(1) � 2, v2(2) � 10, v2(3) � 6, v2(4) � 4.
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allocation implementing X whose support consists of integral allo-
cations A1, : : : , AK such that for every k ∈ [K] and every agent 
i ∈N, the following hold: 

1. If vi(Ak
i ) < vi(Xi), then ∃g�i ∉ Ak

i with Xi,g�i > 0 such that 
vi(Ak

i ) + vi(g�i ) > vi(Xi).
2. If vi(Ak

i ) > vi(Xi), then ∃g+i ∈ Ak
i with Xi,g+i < 1 such that 

vi(Ak
i )� vi(g+i ) < vi(Xi).

Proof. In their proof of proposition 2, Budish et al. (2013) 
propose the following method for computing an implemen-
tation of a given fractional allocation X. Consider a fixed agent 
i ∈N. Suppose the goods in M are indexed as gi,1, : : : , gi,m so 
that vi(gi,k) ≥ vi(gi,k+1) for each k ∈ [m� 1]. For simplicity, we 
will write vi(k) :� vi(gi,k) for all k ∈ [m] and vi(m+ 1) :� 0.

For any i ∈N and any k ∈ [m], define Qi,k :�
Pk

t�1 Xi,gi,t as 
the total fractional amount of the k most preferred goods 
assigned to agent i under X. Consider the following set of 
constraints on a generic fractional allocation Y (for simplic-
ity, we omit the singleton constraints defining a valid allo-
cation, 0 ≤ Yi,g ≤ 1 for all i ∈N and g ∈M, although they can 
be included in either hierarchy without violating the hierar-
chy structure):

H1 : ⌊Qi,k⌋ ≤
Xk

t�1
Yi,gi,t ≤ ⌈Qi,k⌉, ∀i ∈N and ∀k ∈ [m],

H2 :
X

i∈N
Yi,g � 1, ∀g ∈M: (B.1) 

For illustrative purposes, the solid red and blue rectangles in 
Figure B.1 correspond to H1, and the dotted gray rectangles 
correspond to H2. Observe that X trivially satisfies these con-
straints. Budish et al. show that these constraints have the 
so-called “bihierarchy” structure (refer to Section B.1 for a for-
mal definition), which allows computing, in strongly polyno-
mial time, an implementation of X whose support consists of 
integral allocations A1, : : : , Aℓ�that also satisfy these constraints.

Last, Budish et al. show that any integral allocation satis-
fying the constraints in Equation (B.1) must satisfy the guar-
antee in Proposition 2. We show that it in fact satisfies the 
slightly stronger guarantee that we seek. For simplicity, let 
us write Â to denote a generic integral allocation satisfying 
the constraints in Equation (B.1), and Q̂i,k :�

Pk
t�1 Âi,gi,t for 

all i ∈N and k ∈ [m].
Let us first analyze the case where vi(Âi) < vi(Xi). Then, 

there must exist some good g ∈M such that Âi,g < Xi,g. Because 
Âi,g ∈ {0, 1} and Xi,g ∈ [0, 1], this is equivalent to Âi,g � 0 < Xi,g. 
Let k– be the smallest index such that Âi,gi,k�< Xi,gi,k� ; that is, 
gi,k� is agent i’s most preferred good satisfying this condition. 
Hence, gi,k� ∉ Âi and Xi,gi,k� > 0. Furthermore, for all k < k�, we 
have Âi,gi,k ≥ Xi,gi,k , and, as a result, Q̂i,k ≥Qi,k. Thus,

vi(Xi)� vi(Âi) �
Xm

k�1
vi(k) · (Xi,gi,k � Âi,gi,k )

�
Xm

k�1
(vi(k)� vi(k+ 1)) · (Qi,k � Q̂i,k)

≤
Xm

k�k�
(vi(k)� vi(k+ 1)) · (Qi,k � Q̂i,k)

<
Xm

k�k�
(vi(k)� vi(k+ 1)) · 1 � vi(k�), 

where the second transition is a simple algebraic exercise, 
the third transition holds because we noted that Q̂i,k ≥Qi,k 
for all k < k�, and the fourth transition holds because Â 
satisfies H1 in Equation (B.1), and therefore, we have that 
Qi,k � Q̂i,k ≤Qi,k � ⌊Qi,k⌋ < 1. Taking g�i :� gi,k� , this is the 
guarantee we desire when vi(Âi) < vi(Xi).

Next, consider the other case where vi(Âi) > vi(Xi). Then, 
there must exist some good g ∈M such that Âi,g > Xi,g. This 
is equivalent to Âi,g � 1 > Xi,g. Let k+ be the smallest index 
such that gi,k+ satisfies this condition. Then, we have that 
gi,k+ ∈ Âi, Xi,gi,k+ < 1, and by an argument similar to the pre-
vious one, vi(Âi)� vi(Xi) < vi(k+). Hence, in this case, we 
can take g+i :� gi,k+ , as desired. w
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